Stables transversaux

Frédéric Havet et ???

JCALM Octobre 2008

Ces notes ont été rédigées à la suite des journées CALM à Montpellier les 13 et 14 octobre 2008. Elles reprennent le contenu des exposés de R. Aharoni, P. Haxell, R. Holzman, T. Monteil et S. Thomassé,

1 Introduction et définitions

Soit G = (V < E) un graphe et $\Pi = (V_1, V_2, \dots, V_m)$ une partition de V.

Un *stable* ou *ensemble indépendant* est un ensemble de sommet $S \subset G$ deux à deux non-adjacent, i.e. pour tout $x, y \in S$, $xy \notin E(G)$. On note I(G) l'ensemble des stables de G. Un ensemble est Π -transversal s'il contient exactement un élément dans chaque V_i .

Nous allons donner des conditions suffisantes à l'existence d'un stable transversal notamment en termes de domination. On dit qu'un ensemble A domine un ensemble B dans G si $B \subset N(A) = \{v \in V(G) \mid \text{il existe } a \in A, va \in E(G)\}$. Un ensemble A est dominant dans G si A domine $V(G) \setminus A$ et dominant total si A domine V(G). Le nombre de domination (resp. nombre de domination totale) d'un graphe G, noté $\gamma(G)$ (resp. $\gamma_T(G)$), est la plus petite cardinalité d'un ensemble dominant (resp. dominant total) dans G. Clairement $\gamma_T(G) \geq \gamma(G)$.

Pour tout ensemble $S \subset \{V_1, \ldots, V_m\}$, on note G_S le sous-graphe de G induit par les sommets de $\bigcup_{V_i \in S} V_i$].

Théorème 1 Soit G un graphe et $\Pi = (V_1, V_2, ..., V_m)$ une partition de V(G). Si pour tout $S \subset \{V_1, ..., V_m\}$, $\gamma(G_S) \ge 2|S| - 1$ alors G admet un stable Π -transversal.

Théorème 2 *Soit G un graphe et* $\Pi = (V_1, V_2, \dots, V_m)$ *une partition de* V(G). *Si* $|V_i| \ge 2\Delta(G)$ *pour tout* $1 \le i \le m$ *alors G admet un stable* Π -*transversal.*

Le Théorème 2 est un corollaire immédiat du Théorème 2.

Preuve. Dans G|S| parties contiennent au moins $2\Delta(G)|S|$ sommets. Or un ensemble de k sommets domine au plus $k\Delta(G)$ sommets, ainsi $\gamma(G_S) \ge 2|S| - 1$. Les hypothèses du Théorème 1 sont donc vérifiées et G possède donc un stable Π-transversal.

La borne 2Δ du Théorème 2 est optimale. Considérons le graphe G_{Δ} constitué de $2\Delta-1$ copies C_i , $1\leq i\leq 2\Delta-1$, de $K_{\Delta,\Delta}$. Pour tout i soit (A_i,B_i) la bipartition de $V(C_i)$, a_i un sommet de A_i et b_i un sommet de B_i . Posons $V_1=A_1\cup\{a_i\mid 2\leq i\leq \Delta\}$, $V_i=B_{i-1}\cup A_i\setminus\{a_i\}$ pour $2\leq i\leq \Delta$, $W_1=B_{2\Delta-1}\cup\{b_i\mid \Delta\leq i\leq 2\Delta-1\}$ et $W_i=A_{2\Delta+1-i}\cup B_{2\Delta-i}\setminus\{a_{2\Delta-i}\}$ pour $2\leq i\leq \Delta$. Alors les V_i et les W_i forment une partition de $V(G_{\Delta})$. Voir Figure 1. Montrons que cette partition n'admet pas de stable transversal. Par l'absurde, supposons qu'il y ait un stable transversal S. Alors S n'intersecte qu'un seul de A_{Δ} et B_{Δ} . Par symétrie, on peut supposer que $S\cap A_{\Delta}=\emptyset$. Mais alors $S\cap V_{\Delta}=S\cap B_{\Delta-1}\neq\emptyset$. Ainsi S n'intersecte pas $A_{\Delta-1}$. Et ainsi de suite par récurrence, S n'intersecte aucun des A_i pour $1\leq i\leq \Delta$ et donc S n'intersecte pas V_1 une contradiction.

On définit $i\gamma(G) = \max_{I \in I(G)} \min\{|X| \mid X \text{ domine } I\}$. Nous avons $i\gamma(G) \ge \frac{\gamma_T}{2}$.

Théorème 3 Soit G un graphe et $\Pi = (V_1, V_2, ..., V_m)$ une partition de V(G). Si pour tout $S \subset \{V_1, ..., V_m\}$, $i\gamma(G_S) \geq |S|$ alors G admet un stable Π -transversal.

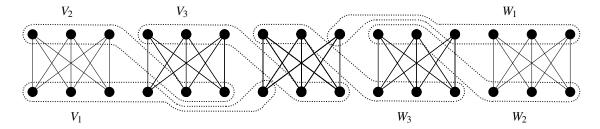


Figure 1: Le graphe G_3 et sa partition.

2 Approche combinatoire

Dans cette partie, nous allons donner des preuves combinatoires du Théorème 1. Pour cela, nous considérons les graphes G Π -critiques, c'est-à-dire n'ayant pas de stable Π -transversal mais tel que pour toute arête e $G \setminus e$ en a un. Observons que si G est Π -critique, toutes parties de Π est un stable dans G. Sinon en prenant une arête e dans l'une des parties, un stable transversal de $G \setminus e$ est aussi un stable transversal de G.

Pour tout sommet x, on note V_x , la partie V_i qui contient x.

Théorème 4 Soit G un graphe Π -critique et e = xy une arête de G. Alors il existe un ensemble $S \subset \{V_1, \dots, V_m\}$ et un couplage M dans G_S tels que:

- (i) $V_x \in S$, $V_y \in S$ et $e \in M$,
- (ii) V(M) domine G_S et
- (*iii*) $|M| \leq |S| 1$.

Preuve. Par récurrence sur *m* le nombre de parties.

Si m=2 alors si G n'a pas de stable Π -transversal, il doit y avoir un graphe complet biparti entre V_1 et V_2 . Alors pour tout arête xy le couplage M constitué de cette seule arête satisfait les conditions (i), (ii) et (iii).

Supposons maintenant que $m \ge 3$ et que le théorème soit vrai pour m plus petit. Quitte à réindexer les V_i , on considère que $\{V_x, V_y\} = \{V_{m-1}, V_m\}$ Soit T un stable transversal de $G \setminus e$. Alors x et y sont dans T. Soit G' le graphe obtenu à partir de G en ôtant les sommets de $W = N(x) \cup N(y)$. On définit une partition Π' de G' dont les parties sont $Y^* = V_x \cup V_y$ et les $Y_i = V_i \setminus W$ pour tout $1 \le i \le m-2$. Notons que toutes les Y_i sont non-vides car elles contiennent un sommet de T. La preuve se divise en deux cas suivant que Y^* est vide ou non.

<u>Cas 1:</u> $Y^* = \emptyset$. Alors pour $S = \{V_x, V_y\}$ et $M = \{e\}$, les propriétés (i), (ii) et (iii) sont aisément vérifiées. Cas 2: $Y^* \neq \emptyset$.

Nous affirmons que G' n'a pas de stable transversal. En effet, s'il en avait un T'. Sans perte de généralité, on peut supposer que l'élément $t' \in T' \cap Y^*$ appartient à $V_x \setminus W$. Mais alors $T' \cup \{y\}$ est un stable transversal de G, une contradiction.

Enlevons des arêtes de G' jusqu'à obtenir un graphe Π' -critique. Soit e' une arête incidente à un sommet de Y^* . \mathbf{y} en a t-il une trivialement? Par hypothèse de récurrence, il existe $S' \subset \{Y_1, \dots, Y_{m-2}, Y^*\}$ et un couplage M' de $H_{S'}$ qui vérifie les propriétés (i), (ii) et (iii) pour H. En particulier, $Y^* \in S'$, V(M') domine $H_{S'}$ et $|M'| \leq |S'| - 1$. Posant $S = S' \setminus \{Y^*\} \cup \{V_x, V_y\}$ et $M = M \cup \{e\}$. Comme x et y domine tout ce qui n'est pas dans Y^* , on vérifie facilement que M et S satisfont les les propriétés (i), (ii) et (iii) pour G.

Du Théorème 4, on déduit aisément le Théorème 1.

3 Formulation par l'algèbre linéaire

4 Approche topologique

4.1 Théorème de Hall généralisé

Le théorème de Hall donne une condition nécessaire et suffisante pour l'existence d'un couplage saturant A dans un graphe biparti (A,B),E).

Théorème 5 (Hall 1935) Soit G = ((A,B),E) un graphe biparti. G a un couplage saturant A si et seulement si $|N(S)| \ge |S|$ pour tout $S \subset A$.

Celui-ci a été généralisé aux graphes bipartis (A,B),E) pour lesquels la partie B est munie d'une structure de matroide, i.e. $\mathcal{M}=(B,I)$ est un matroide.

Rappelons que si S un ensemble fini non vide et I une famille non vide de parties de S, le couple (S,I) est un matroide s'il vrifie les deux axiomes suivants:

- *l'hérédité*: si $X \in I$ alors $\forall Y \subset X, Y \in I$.
- *l'échange*: si $X \in I$, $Y \in I$ et |Y| > |X| alors il existe $y \in Y \setminus X$ tel que $X \cup \{y\} \in I$.

Les éléments de I sont appelés les *indépendants* du matroide. Le *rang* d'un ensemble $U \subset S$, noté $\rho(U)$, est la cardinalité maximale d'un indépendant inclus dans U.

Un couplage est dit \mathcal{M} -compatible si l'ensemble de ses extrémités dans B est un élément de I.

Théorème 6 (Rado) Soient G = (A,B),E) un graphe biparti et $\mathcal{M} = (B,I)$ un matroide. G a un couplage \mathcal{M} -compatible saturant A si et seulement si $\rho(N(S)) \geq |S|$ pour tout $S \subset A$.

Notons que $(B, \mathcal{P}(B))$ est un matroide pour lequel tout couplage est compatible. Le Théorème de Hall (5) est le cas particulier du Théorème de Rado (6) appliqué à ce matroide.

Nous allons montrer un analogue à ce théorème dans le cas où B est non pas munie d'une structure de matroide mais d'une structure de complexe simplicial c'est-à-dire d'hypergraphe C = (B,I) clos par inclusion. Dans un tel hypergraphe, la famille I de parties de B satisfait l'axiome d'hérédité mais pas nécessairement celui d'échange. De même que pour un matroide, si C = (B,I) est un complexe simplicial, un couplage est C-compatible si l'ensemble de ses extrémités dans B est un élément de I.

Théorème 7 Soient G = (A,B),E) un graphe biparti et C = (B,I) un complexe simplicial. Si $\eta(C[N(S)]) \ge |S|$ pour tout $S \subset A$ alors G a un couplage C-compatible saturant A.

Attention: Contrairement au Théorèmes 5 et 6, le Théorème 7 donne une condition suffisante à l'existence d'un couplage compatible saturant *A*, mais non nécessaire.

La preuve du Théorème 7 est complexe et utilise une approche topologique. Avant de donner sa preuve (Souspartie 4.3), nous montrons comment il s'applique à la recherche de stable transversaux.

4.2 Application au stables transversaux

Soit G un graphe et $\Pi = (V_1, \dots, V_m)$ une partition de V(G). Soit F le graphe biparti (A, B), E) avec $A = \{V_1, \dots, V_m\}, B = V(G)$ et $E = \{V_i x \mid x \in V_i\}$. Considèrons le complexe simplicial $\mathcal{H} = (B, I(G))$. Clairement, F a un couplage \mathcal{H} -compatible saturant A si et seulement si G admet un stable Π -transversal.

Théorème 8 (Aharoni, Haxell) *Soit G un graphe. Alors* $\eta(I(G)) \geq i\gamma(G)$.

Preuve du Théorème 3. Considérons le graphe biparti F et le complexe simplicial \mathcal{H} définis ci-dessus. Pour tout $S \subset A$, nous avons $\eta(\mathcal{H}[N(S)]) = \eta(I(G_S))$. D'apres le Théorème 8, $\eta(I(G_S)) \ge i\gamma(S) \ge |S|$ par hypothèse. Ainsi d'après le Théorème 7, F admet un couplage \mathcal{H} -compatible saturant A. Donc G admet un stable Π -transversal. \square

4.3 Preuve du Théorème 7

Thierry

5 Stable transversal fractionnaire

Dans tout cette partie, nous regardons une version fractionnaire du problème du stable transversal.

Soit I un ensemble de sommets. On note χ_I le vecteur caractéristique de I pour lequel il y a une coordonnée par sommet v de G qui vaut 1 si $v \in I$ et 0 sinon. On note $I^*(G) = \text{conv}\{\chi_I \mid I \in I(G)\}$ l'ensemble des combinaisons convexes des stables. Pour une partition $\Pi = \{V_1, \ldots V_m\}$, un *stable* Π -transversal fractionnaire est une fonction $f: V \to I^*(G)$ telle que pour tout $1 \le j \le m$, $\sum_{v \in V_i} f(v) \ge 1$.

Nous allons maintenant montrer le théorème suivant qui améliore les Théorèmes 1 et 3 dans le cas fractionnaire.

Théorème 9 *Soit G un graphe et* $\Pi = \{V_1, ..., V_m\}$ *une partition de* V(G). *Si pour tout* $S \subset \{V_1, ..., V_m\}$, $\gamma(G_S) \ge |S|$ *alors G admet un stable* Π -transversal fractionnaire.

Preuve. Pour cela nous donnons une formulation LP du problème du stable transversal fractionnaire. Ainsi il existe un stable transversal fractionnaire si et seulement si le minimum de $\sum_{I \in I^*(G)} x_I$ sous les contraintes $x_I \ge 0, \forall I \in I^*(G)$ et $\sum_{I \in I^*(G)} |I \cap V_j| x_I \ge 1, \forall 1 \le j \le m$ est au plus 1. Par dualité de la programmation linéaire, ceci est vrai si et seulement le maximum $\sum_{1 \le j \le m} y_j$ sous les contraintes $y_j \ge 0, \forall 1 \le j \le m$ et $\sum_{1 \le j \le m} |I \cap V_j| y_j \le 1, \forall I \in I^*(G)$ est au plus 1.

Nous allons donc montrer que sous la condition $\gamma(G_S) \geq |S|$, ce maximum vaut au plus 1. Pour cela, considérons y_1, \ldots, Y_m satisfaisant les contraintes et montrons que $\sum_{1 \leq j \leq m} y_j \leq 1$. Sans perte de généralité, on peut supposer que $y_1 \geq y_2 \geq \cdots \geq y_m$. Choisissons un indépendant $I = \{v_1, \ldots, v_m\}$ par le processus suivant: $v_1 \in V_1, v_2 \in (V_1 \cup V_2) \setminus N(v_1)$ et ainsi de suite $v_i \in \bigcup_{1 \leq j \leq i} V_j \setminus \bigcup_{1 \leq j \leq i-1} N(v_j)$. Comme $\gamma(G_S) \geq |S|$ pour tout S, ceci est possible.

D'après les contraintes nous avons $\Sigma_1 = \sum_{1 \leq j \leq m} |I \cap V_j| y_j \leq 1 \leq 1$. Nous voulons montrer $\Sigma_2 = \sum_{1 \leq j \leq m} y_j \leq 1$. Le coefficent de y_1 dans Σ_1 est au moins 1 et il est d'exactement 1 dans Σ_2 et plus généralement, pout tout j, la somme des coefficients de y_1, \ldots, y_j est au plus j dans Σ_1 et exactement j dans Σ_2 . Comme $y_1 \geq y_2 \geq \cdots \geq y_m$, il vient $\Sigma_2 \leq \Sigma_1 \leq 1$.

References